Answer:
Centripetal acceleration will be equal to [tex]126.684rad/sec^2[/tex]
Explanation:
We have given length of the blade , that is radius r = 59 m
Angular speed [tex]\omega =14rpm=\frac{2\times 3.14\times 14}{60}=1.4653rad/sec[/tex]
We have to find the centripetal acceleration
We know that centripetal acceleration is given by
[tex]a_c=\frac{v^2}{r}=\omega ^2r[/tex] ( as [tex]v=\omega r[/tex] )
So angular acceleration [tex]a_c=1.4653^2\times 59=126.684rad/sec^2[/tex]
Centripetal; acceleration will be equal to [tex]126.684rad/sec^2[/tex]