Answer: 82
Step-by-step explanation:
The formula to find the sample size is given by :-
[tex]n= (\dfrac{z^*\cdot \sigma}{E})^2[/tex]
, where E = Margin of error.
[tex]\sigma[/tex] = Population standard deviation for the prior study.
As per given , we have
[tex]\sigma=387.40[/tex] gallons.
Margin of error : E= 110 gallons
Critical value for 99% confidence level = z* = 2.576
Then, the required sample size : [tex]n= (\dfrac{(2.576)\cdot (387.40)}{110})^2[/tex]
[tex]n= (9.07220363636)^2\approx82[/tex] {Rounded to the nearest integer.}
Hence, the minimum sample size = 82