Answer:
The value of [tex]h^\prime(1)=5[/tex]
Step-by-step explanation:
Given that [tex]h(x)=f(f(x))[/tex]
now to find [tex]h(x)=f(f(x))[/tex] from the given functions f(x) and f'x
let [tex]h(x)=f(f(x))[/tex]
Then put x=1 in above function we get
[tex]h(1)=f(f(1))[/tex]
[tex]=f(3)[/tex] (from the table f(1)=3 and f(3)=6)
Therefore h(1)=6
Now to find h'(1)
Let
[tex]h^{\prime}(x)=f^{\prime}(f^\prime(x))[/tex] (since [tex]h(x)=f(f(x))[/tex] )
put x=1 in above function we get
[tex]h^{\prime}(1)=f^{\prime}(f^\prime(1))[/tex]
[tex]=f^{\prime}(2)[/tex] (From the table [tex]f^\prime(1)=2[/tex] and [tex]f^\prime(2)=5[/tex])
[tex]h^{\prime}(1)=5[/tex]
Therefore [tex]h^{\prime}(1)=5[/tex]