Answer:
(a). The sound intensity is [tex]0.385\times10^{-3}\ W/m^2[/tex].
(b). The sound intensity level relative to the threshold is 85.85 dB.
Explanation:
Given that,
Sound intensity [tex]I=3.7\times10^{-3}\ W/m^2[/tex]
Distance [tex]r_{2}= 3.1r_{1}[/tex]
We know that the sound intensity
[tex]Intensity\propto\dfrac{1}{distance^2}[/tex]
[tex]I\propto\dfrac{1}{r^2}[/tex]
We need to calculate the sound intensity
Using relation of intensity
[tex]\dfrac{I_{2}}{I_{1}}=\dfrac{r_{1}^2}{r_{2}^2}[/tex]
[tex]I_{2}=\dfrac{r_{1}^2}{r_{2}^2}\times I_{1}[/tex]
Put the value into the formula
[tex]I_{2}=3.7\times10^{-3}\times(\dfrac{r_{1}}{3.1r_{1}})^2[/tex]
[tex]I_{2}=3.7\times10^{-3}\times(\dfrac{1}{3.1})^2[/tex]
[tex]I_{2}=0.385\times10^{-3}\ W/m^2[/tex]
(b). We need to calculate the sound intensity level relative to the threshold
Using formula of sound intensity level
[tex]L=10 log_{10}(\dfrac{I}{I_{0}})[/tex]
Put the value into the formula
[tex]L=10 log_{10}(\dfrac{0.385\times10^{-3}}{10^{-12}})[/tex]
[tex]L=85.85 dB[/tex]
Hence, (a). The sound intensity is [tex]0.385\times10^{-3}\ W/m^2[/tex].
(b). The sound intensity level relative to the threshold is 85.85 dB.