Answer:
[tex]90m\times 45 m[/tex]
Step-by-step explanation:
We are given that
Total length of fence=180 m
Let length of rectangular field=x
Width of rectangular field=y
According to question
Length of fencing=x+2y
[tex]180=x+2y[/tex]
[tex]x=180-2y[/tex]
Area of rectangular field=[tex]length\times breadth[/tex]
Area of rectangular field=[tex]x\times y[/tex]
[tex]A=y(180-2y)[/tex]
[tex]A(y)=180y-2y^2[/tex]
Differentiate w.r.t y
A'(y)=180-4y
A'(y)=0
180-4y=0
[tex]4y=180[/tex]
[tex]y=\frac{180}{4}=45[/tex]
Again differentiate w.r.t y
A''(y)=-4<0
Areas of rectangular field is minimum at y=45
Substitute the value then, we get
x=180-2(45)=90
Dimensions of rectangular field are 90 m by 45 m