Answer : The volume of [tex]NH_4I[/tex] solution required is, 2.93 L
The number of moles of [tex]PbI_2[/tex] formed from the reaction is, 0.662 moles.
Explanation :
First we have to calculate the initial moles of [tex]Pb(NO_3)_2[/tex].
[tex]\text{Moles of }Pb(NO_3)_2=\text{Concentration of }Pb(NO_3)_2\times \text{Volume of solution}[/tex]
[tex]\text{Moles of }Pb(NO_3)_2=0.700M\times 0.945L=0.662mol[/tex]
Now we have to calculate the moles of [tex]NH_4I[/tex]
The balanced chemical reaction is:
[tex]Pb(NO_3)_2(aq)+2NH_4I(aq)\rightarrow PbI_2(s)+2NH_4NO_3(aq)[/tex]
From the balanced chemical reaction we conclude that,
As, 1 mole of [tex]Pb(NO_3)_2[/tex] react with 2 moles of [tex]NH_4I[/tex]
So, 0.662 mole of [tex]Pb(NO_3)_2[/tex] react with [tex]0.662\times 2=1.32[/tex] moles of [tex]NH_4I[/tex]
Now we have to calculate the volume of [tex]NH_4I[/tex]
[tex]\text{Volume of }NH_4I=\frac{\text{Moles of }NH_4I}{\text{Concentration of }NH_4I}[/tex]
[tex]\text{Volume of }NH_4I=\frac{1.32mol}{0.450mol/L}=2.93L[/tex]
Now we have to calculate the moles of [tex]PbI_2[/tex]
From the balanced chemical reaction we conclude that,
As, 1 mole of [tex]Pb(NO_3)_2[/tex] react to give 1 moles of [tex]PbI_2[/tex]
So, 0.662 mole of [tex]Pb(NO_3)_2[/tex] react to give 0.662 moles of [tex]PbI_2[/tex]
Thus, the number of moles of [tex]PbI_2[/tex] formed from the reaction is, 0.662 moles.