Respuesta :
Answer:
Step-by-step explanation:
f(x)=x+4(x^2+2x-3)=4x^2+9x-12
f'(x)=8x+9
f'(x)=0,gives x=-9/8
f(-5)=-5+4(-5-1)(-5+3)=-5+4*-6*-2=43
f(-9/8)=-9/8+4(-9/8-1)(-9/8+3)
=-9/8+4*-17/8*15/8
=-9/8-255/16
=-273/16=-17 1/16
f(5)=4*5^2+9*5-12=100+45-12=133
absolute maximum=133
absolute minimum=-17 1/16
For given function, absolute maxima at x = 5 and absolute minima at [tex]x=-\frac{9}{8}[/tex]
Absolute maximum value is 133 and absolute minimum value is [tex]-\frac{273}{16}[/tex]
Given function is,
[tex]f(x)=x+4(x-1)(x+3)\\\\f(x)=4x^{2} +9x-12[/tex]
To find critical points, Differentiate above function and equate with zero.
[tex]\frac{df}{dx} =8x+9=0\\\\x=-\frac{9}{8}[/tex]
We have critical points are, [tex]x=5,x=-\frac{9}{8} ,x=-5[/tex]
[tex]f(-5)=43\\\\f(-\frac{9}{8} )=-\frac{273}{16} \\\\f(5)=133[/tex]
From above, it is clear that [tex]f(5)[/tex] is absolute maximum value and [tex]f(-\frac{9}{8} )[/tex] is absolute minimum value.
Thus, For given function, absolute maxima at x = 5 and absolute minima at [tex]x=-\frac{9}{8}[/tex]
Absolute maximum value is 133 and absolute minimum value is [tex]-\frac{273}{16}[/tex]
Learn more:
https://brainly.com/question/7672874