Respuesta :
Answer:
a) I = [tex]5*10^9kg*m^2[/tex]
b) L = [tex]10^9[/tex] (kg*m^2)/s
c) [tex]V_s[/tex]= 233.3m/s
d) [tex]W_s[/tex]= 0.1 rad/s
Explanation:
a) We know that:
I= [tex]\frac{1}{2}mR^2[/tex]
where I is the moment of inertia, m the mass and R the radius. So, replacing values, we get:
I= [tex]\frac{1}{2}(10^6kg)(100m)^2[/tex]
I = [tex]5*10^9kg*m^2[/tex]
b) We know that:
L = IW
where L is the angular momentum, I the moment of inertia and W the angular velocity. So, replacing values, we get:
L = [tex](5*10^9)(0.2rad/s)[/tex]
L = [tex]10^9[/tex] (kg*m^2)/s
c) Using the conservation of the linear momentum:
[tex]P_i = P_f[/tex]
so:
[tex]M_mV_m = M_sV_s[/tex]
where [tex]M_m[/tex] is the mass of the meteor, [tex]V_m[/tex] is the velocity of the meteor, [tex]M_s[/tex] is the mass of the meteor and the space-station after the collition and [tex]V_s[/tex] is the velocity of the meteor and the space-station after the collition. So, replacing values, we get:
[tex](5*10^5kg)(700m/s) = (5*10^5+10^6)V_s[/tex]
Solving for [tex]V_s[/tex]:
[tex]V_s[/tex]= 233.3m/s
d) Using the conservation of the angular momentum:
[tex]L_i = L_f[/tex]
so:
[tex]I_aW_a = I_sW_s[/tex]
where [tex]I_a[/tex] is the moment of inertia of the station, [tex]W_a[/tex] is the angular velocity of the station, [tex]I_s[/tex] is the moment of inerta of the meteor and the space-station after the collition and [tex]W_s[/tex] is the angular velocity of the meteor and the space-station after the collition. So, replacing values, we get:
[tex]I_aW_a = (I_a + MR^2)W_s[/tex]
[tex]10^9 = (5*10^9+(5*10^5(100^2)W_s[/tex]
solving for [tex]W_s[/tex]:
[tex]W_s[/tex]= 0.1 rad/s