A horizontal circular platform (m = 119.1 kg, r = 3.23m) rotates about a frictionless vertical axle. A student (m = 54.3kg) walks slowly from the rim of the platform toward the center. The angular velocity, omega, of the system is 3.1 rad/s when the student is at the rim. Find omega when the student is 1.39m from the center.

Respuesta :

AMB000

Answer:

[tex]\omega_2=5.1rad/s[/tex]

Explanation:

Since there is no friction angular momentum is conserved. The formula for angular momentum thet will be useful in this case is [tex]L=I\omega[/tex]. If we call 1 the situation when the student is at the rim and 2 the situation when the student is at [tex]r_2=1.39m[/tex] from the center, then we have:

[tex]L_1=L_2[/tex]

Or:

[tex]I_1\omega_1=I_2\omega_2[/tex]

And we want to calculate:

[tex]\omega_2=\frac{I_1\omega_1}{I_2}[/tex]

The total moment of inertia will be the sum of the moment of intertia of the disk of mass [tex]m_D=119.1 kg[/tex] and radius [tex]r_D=3.23m[/tex], which is [tex]I_D=\frac{m_Dr_D^2}{2}[/tex], and the moment of intertia of the student of mass [tex]m_S=54.3kg[/tex] at position [tex]r[/tex] (which will be [tex]r_1=r=3.23m[/tex] or [tex]r_2=1.39m[/tex]) will be [tex]I_{S}=m_Sr_S^2[/tex], so we will have:

[tex]\omega_2=\frac{(I_D+I_{S1})\omega_1}{(I_D+I_{S2})}[/tex]

or:

[tex]\omega_2=\frac{(\frac{m_Dr_D^2}{2}+m_Sr_{S1}^2)\omega_1}{(\frac{m_Dr_D^2}{2}+m_Sr_{S2}^2)}[/tex]

which for our values is:

[tex]\omega_2=\frac{(\frac{(119.1kg)(3.23m)^2}{2}+(54.3kg)(3.23m)^2)(3.1rad/s)}{(\frac{(119.1kg)(3.23m)^2}{2}+(54.3kg)(1.39m)^2)}=5.1rad/s[/tex]