Answer:
[tex]\omega_2=5.1rad/s[/tex]
Explanation:
Since there is no friction angular momentum is conserved. The formula for angular momentum thet will be useful in this case is [tex]L=I\omega[/tex]. If we call 1 the situation when the student is at the rim and 2 the situation when the student is at [tex]r_2=1.39m[/tex] from the center, then we have:
[tex]L_1=L_2[/tex]
Or:
[tex]I_1\omega_1=I_2\omega_2[/tex]
And we want to calculate:
[tex]\omega_2=\frac{I_1\omega_1}{I_2}[/tex]
The total moment of inertia will be the sum of the moment of intertia of the disk of mass [tex]m_D=119.1 kg[/tex] and radius [tex]r_D=3.23m[/tex], which is [tex]I_D=\frac{m_Dr_D^2}{2}[/tex], and the moment of intertia of the student of mass [tex]m_S=54.3kg[/tex] at position [tex]r[/tex] (which will be [tex]r_1=r=3.23m[/tex] or [tex]r_2=1.39m[/tex]) will be [tex]I_{S}=m_Sr_S^2[/tex], so we will have:
[tex]\omega_2=\frac{(I_D+I_{S1})\omega_1}{(I_D+I_{S2})}[/tex]
or:
[tex]\omega_2=\frac{(\frac{m_Dr_D^2}{2}+m_Sr_{S1}^2)\omega_1}{(\frac{m_Dr_D^2}{2}+m_Sr_{S2}^2)}[/tex]
which for our values is:
[tex]\omega_2=\frac{(\frac{(119.1kg)(3.23m)^2}{2}+(54.3kg)(3.23m)^2)(3.1rad/s)}{(\frac{(119.1kg)(3.23m)^2}{2}+(54.3kg)(1.39m)^2)}=5.1rad/s[/tex]