What is the simplified form of the following expression?

2 StartRoot 27 EndRoot + StartRoot 12 EndRoot minus 3 StartRoot 3 EndRoot minus 2 StartRoot 12 EndRoot

A. StartRoot 3 EndRoot
B. 9 StartRoot 3 EndRoot
C. 11 StartRoot 3 EndRoot
D. 15 StartRoot 3 EndRoot

Respuesta :

Answer:

A. StartRoot 3 EndRoot.

Step-by-step explanation:

We have to simplify the following expression  

[tex]2\sqrt{27} + \sqrt{12} - 3\sqrt{3} - 2\sqrt{12}[/tex]

Now, we know that 27 = 3 × 3 × 3, hence [tex]\sqrt{27} = 3 \sqrt{3}[/tex].

And 12 = 2 × 2 × 3, hence [tex]\sqrt{12} = 2 \sqrt{3}[/tex]

So, the given expression becomes  

[tex]2\sqrt{27} + \sqrt{12} - 3\sqrt{3} - 2\sqrt{12}[/tex]

= 2 × 3√3 + 2√3 - 3√3 - 2 × 2√3

= 6√3 + 2√3 - 3√3 - 4√3

= √3  

Therefore, the solution is A. StartRoot 3 EndRoot. (Answer)

Answer:

Step-by-step explanation:

A is correct... EDGE