What is the following simplified product? Assume x greater-than-or-equal-to 0

(StartRoot 6 x squared EndRoot + 4 StartRoot 8 x cubed EndRoot) (StartRoot 9 x EndRoot minus x StartRoot 5 x Superscript 5 Baseline)

A. 3 x StartRoot 6 x EndRoot + x Superscript 4 Baseline StartRoot 30 x EndRoot + 24 x squared + 8 x Superscript 5 Baseline StartRoot 10 x EndRoot
B. 3 x StartRoot 6 x EndRoot + x Superscript 4 Baseline StartRoot 30 x EndRoot + 24 x squared StartRoot 2 EndRoot + 8 x Superscript 5 Baseline StartRoot 10 EndRoot
C. 3 x StartRoot 6 x EndRoot minus x Superscript 4 Baseline StartRoot 30 x EndRoot + 24 x squared StartRoot 2 EndRoot minus 8 x Superscript 5 Baseline StartRoot 10 EndRoot
D. 3 x StartRoot 6 x EndRoot minus x Superscript 4 Baseline StartRoot 30 x EndRoot + 24 x squared StartRoot 2 x EndRoot minus 8 x Superscript 5 Baseline StartRoot 10 x EndRoot

Respuesta :

Answer:

Option C is correct.

Step-by-step explanation:

We have to simplify the product of  

(StartRoot 6 x squared EndRoot + 4 StartRoot 8 x cubed EndRoot) (StartRoot 9 x EndRoot minus x StartRoot 5 x Superscript 5 Baseline)

= [tex](\sqrt{6x^{2}} + 4\sqrt{8x^{3}})(\sqrt{9x} - x\sqrt{5x^{5}})[/tex]

= [tex](\sqrt{6x^{2}} + \sqrt{128x^{3}})(\sqrt{9x} - \sqrt{5x^{7}})[/tex]

= [tex]\sqrt{54x^{3}} - \sqrt{30x^{9}} + \sqrt{1152x^{4}} - \sqrt{640x^{10}}[/tex]

= [tex]3x\sqrt{6x} - x^{4}\sqrt{30x} + 24x^{2}\sqrt{2} - 8x^{5}\sqrt{10}[/tex]

=  3 x StartRoot 6 x EndRoot minus x Superscript 4 Baseline StartRoot 30 x EndRoot + 24 x squared StartRoot 2 EndRoot minus 8 x Superscript 5 Baseline StartRoot 10 EndRoot

Therefore, option C is correct. (Answer)

Answer:

c

Step-by-step explanation: