Respuesta :

Answer:

The surface area of the prism is 480 in².

Step-by-step explanation:

Given:

The prism dimensions are 8in 15in 17in and 9in.

Now, to find the surface area:

So, to get the surface area we put formula:

a=8in, b=15in, c=17in and h=9in.

Surface area = 2A+(a+b+c)h.

Whereas, [tex]A=\sqrt{s(s-a)(s-b)(s-c)}[/tex]

And, [tex]s=\frac{a+b+c}{2}[/tex]

Now, we find s first:

[tex]s=\frac{a+b+c}{2}[/tex]

[tex]s=\frac{8+15+17}{2}[/tex]

[tex]s=\frac{40}{2}=20.[/tex]

Then, we get A :

[tex]A=\sqrt{s(s-a)(s-b)(s-c)}[/tex]

[tex]A=\sqrt{20(20-8)(20-15)(20-17)}[/tex]

[tex]A=\sqrt{20(12)(5)(3)}[/tex]

On solving we get:

[tex]A=\sqrt{3600}=60.[/tex]

Now, putting the value of A in the formula to get the surface area:

[tex]Surface area = 2A+(a+b+c)h.[/tex]

[tex]Surface area = 2\times 60+(8+15+17)9.[/tex]

[tex]Surface area = 120+(40)9.[/tex]

[tex]Surface area = 120+360.[/tex]

[tex]Surface area = 480\ in^2.[/tex]

Therefore, the surface area of the prism is 480 in².

ACCESS MORE