Answer:
The surface area of the prism is 480 in².
Step-by-step explanation:
Given:
The prism dimensions are 8in 15in 17in and 9in.
Now, to find the surface area:
So, to get the surface area we put formula:
a=8in, b=15in, c=17in and h=9in.
Surface area = 2A+(a+b+c)h.
Whereas, [tex]A=\sqrt{s(s-a)(s-b)(s-c)}[/tex]
And, [tex]s=\frac{a+b+c}{2}[/tex]
Now, we find s first:
[tex]s=\frac{a+b+c}{2}[/tex]
[tex]s=\frac{8+15+17}{2}[/tex]
[tex]s=\frac{40}{2}=20.[/tex]
Then, we get A :
[tex]A=\sqrt{s(s-a)(s-b)(s-c)}[/tex]
[tex]A=\sqrt{20(20-8)(20-15)(20-17)}[/tex]
[tex]A=\sqrt{20(12)(5)(3)}[/tex]
On solving we get:
[tex]A=\sqrt{3600}=60.[/tex]
Now, putting the value of A in the formula to get the surface area:
[tex]Surface area = 2A+(a+b+c)h.[/tex]
[tex]Surface area = 2\times 60+(8+15+17)9.[/tex]
[tex]Surface area = 120+(40)9.[/tex]
[tex]Surface area = 120+360.[/tex]
[tex]Surface area = 480\ in^2.[/tex]
Therefore, the surface area of the prism is 480 in².