The construction of a flat rectangular roof (6.17 m × 5.92 m) allows it to withstand a maximum net outward force of 2.00 × 104 N. The density of the air is 1.29 kg/m3. At what wind speed will this roof blow outward?

Respuesta :

Answer:

[tex]v_2=29.13\ m/s[/tex]

Explanation:

It is given that,

Dimension of the rectangular roof, (6.17 m × 5.92 m)

The maximum net outward force, [tex]F=2\times 10^4\ N[/tex]

The density of air, [tex]\rho=1.29\ kg/m^3[/tex]

The Bernoulli equation is used to find wind speed of this roof blow outward. It is given by :

[tex]P_1+\dfrac{1}{2}\rho v_1^2=P_2+\dfrac{1}{2}\rho v_2^2[/tex]

Here, [tex]v_1=0[/tex] (since air inside the roof is not moving)

[tex]v_2=\sqrt{\dfrac{2(P_1-P_2)}{\rho}}[/tex]

Since, [tex]F=(P_1-P_2)A[/tex]

[tex]v_2=\sqrt{\dfrac{2F}{\rho A}}[/tex]

[tex]v_2=\sqrt{\dfrac{2\times 2\times 10^4}{1.29\times 6.17\times 5.92 }}[/tex]

[tex]v_2=29.13\ m/s[/tex]

So, the wind speed of  this roof blow outward is 29.13 m/s. Hence, this is the required solution.

ACCESS MORE