Answer:
[tex]v_2=29.13\ m/s[/tex]
Explanation:
It is given that,
Dimension of the rectangular roof, (6.17 m × 5.92 m)
The maximum net outward force, [tex]F=2\times 10^4\ N[/tex]
The density of air, [tex]\rho=1.29\ kg/m^3[/tex]
The Bernoulli equation is used to find wind speed of this roof blow outward. It is given by :
[tex]P_1+\dfrac{1}{2}\rho v_1^2=P_2+\dfrac{1}{2}\rho v_2^2[/tex]
Here, [tex]v_1=0[/tex] (since air inside the roof is not moving)
[tex]v_2=\sqrt{\dfrac{2(P_1-P_2)}{\rho}}[/tex]
Since, [tex]F=(P_1-P_2)A[/tex]
[tex]v_2=\sqrt{\dfrac{2F}{\rho A}}[/tex]
[tex]v_2=\sqrt{\dfrac{2\times 2\times 10^4}{1.29\times 6.17\times 5.92 }}[/tex]
[tex]v_2=29.13\ m/s[/tex]
So, the wind speed of this roof blow outward is 29.13 m/s. Hence, this is the required solution.