Respuesta :
Answer:
The rate flow of water through the pipes is 60.34 kg/s.
Explanation:
Given that,
Diameter of pipe d₁= 15.0 cm
Reduce diameter d₂= 7.50 cm
Pressure of large pipe [tex]P_{l}= 9.40\times10^{4}\ Pa[/tex]
Pressure of smaller pipe [tex]P_{s}=2.40\times10^{4}\ Pa[/tex]
We need to calculate the velocity
Using equation of continuity
[tex]A_{1}v_{1}=A_{2}v_{2}[/tex]
[tex]\pi\times r^2\times v_{1}=\pi\times r^2\times v_{2}[/tex]
Put the value into the formula
[tex](7.5\times10^{-2})^2\times v_{1}=(3.75\times10^{-2})^2\times v_{2}[/tex]
[tex]v_{1}=\dfrac{(3.75\times10^{-2})^2}{(7.5\times10^{-2})^2}\times v_{2}[/tex]
[tex]v_{1}^2=\dfrac{1}{4}\times v_{2}^2[/tex]
[tex]v_{1}=\dfrac{1}{2}\times v_{2}[/tex]....(I)
We need to calculate the velocity
Using Bernoulli equation
[tex]P_{1}+\dfrac{1}{2}\rho\times v_{1}^2+\rho gh_{1}=P_{1}+\dfrac{1}{2}\rho\times v_{2}^2+\rho gh_{2}[/tex]
Here, [tex]h_{1}=h_{2}[/tex]
[tex]P_{1}+\dfrac{1}{2}\rho\times v_{1}^2=P_{2}+\dfrac{1}{2}\rho\times v_{2}^2[/tex]
[tex]P_{1}-P_{2}=\dfrac{1}{2}\times\rho (v_{2}^2-v_{1}^2)[/tex]
Put the value into the formula
[tex]9.40\times10^{4}-2.40\times10^{4}=\dfrac{1}{2}\times1000\times(v_{2}^2-\dfrac{1}{4}\times v_{2}^2)[/tex]
[tex]7.0\times10^{4}=500\times(\dfrac{3}{4}\times v_{2}^2)[/tex]
[tex]v_{2}^2=\dfrac{7.0\times10^{4}\times4}{3\times500}[/tex]
[tex]v_{2}=\sqrt{\dfrac{7.0\times10^{4}\times4}{500\times3}}[/tex]
[tex]v_{2}=13.66\ m/s[/tex]
We need to calculate the flow of water through the pipe
Using formula of flow
[tex]flow = Area_{2}\times v_{2}[/tex]
Put the value into the formula
[tex]flow=\pi\times(3.75\times10^{-2})^2\times13.66[/tex]
[tex]flow=0.06034\ m^3/s[/tex]
We need to calculate the flow rate of water
Using formula of flow rate
[tex]M=flow\times\rho_{w}[/tex]
Put the value into the formula
[tex]M=0.06034\times1000[/tex]
[tex]M=60.34\ kg/s[/tex]
Hence, The rate flow of water through the pipes is 60.34 kg/s.