Respuesta :

Answer:

Proved that [tex](\tan \theta + \cot \theta)^{2} = \sec^{2} \theta + \csc^{2} \theta[/tex].

Step-by-step explanation:

We have to prove that  

[tex](\tan \theta + \cot \theta)^{2} = \sec^{2} \theta + \csc^{2} \theta[/tex]

Now, Left hand side  

= [tex](\tan \theta + \cot \theta)^{2}[/tex]

= [tex]\tan^{2} \theta + 2\times \tan \theta \times \cot \theta + \cot^{2} \theta[/tex] {Since we know the formula (a + b)² = a² + 2ab + b²}

=  [tex]\tan^{2} \theta + 2 + \cot^{2} \theta[/tex]

{Since [tex]\tan \theta \times \cot \theta = 1[/tex]}

= [tex](\tan^{2} \theta + 1) + (\cot^{2} \theta + 1)[/tex]

= [tex]\sec^{2} \theta + \csc^{2} \theta[/tex]

{Since we know the identities:

[tex]\sec^{2} x = \tan^{2} x + 1[/tex] and [tex]\csc^{2} x = \cot^{2} x + 1[/tex]}

= Right hand side

Hence, proved.

ACCESS MORE