Respuesta :
Answer:
C. StartFraction 4 x Superscript 4 Baseline Over y Superscript 6 EndFraction
Step-by-step explanation:
Fractional Powers
The expression
[tex]\sqrt[m]{y^n}=y^{\frac{n}{m}}[/tex]
can be used to reduce roots and fractional powers.
Another useful relation is
[tex](y^n)^m=y^{n.m}[/tex]
We are given the expressión
[tex]\left ( 16x^8y^{-12} \right )^\frac{1}{2}[/tex]
It's equivalent to
[tex](16)^\frac{1}{2}(x^8)^\frac{1}{2}(y^{-12})^\frac{1}{2}[/tex]
[tex]=(4)(x^4)(y^{-6})[/tex]
[tex]=\displaystyle \frac{4x^4}{y^{6}}[/tex]
This corresponds to the option
C. StartFraction 4 x Superscript 4 Baseline Over y Superscript 6 EndFraction