39 points help meeeeeeeeeeeeee It is due right now

Answer:
The new points after the transformation are:
W"(-3,-2), X"(-1,-5), Y"(0,-4)
Step-by-step explanation:
Given sequence of transformation:
[tex](x,y)\rightarrow (x,-y)\rightarrow (x-5,y-2)[/tex]
Given points:
W(2,0) , X(4,3), Y(5,2)
To find image after the transformation.
First transformation:
[tex](x,y)\rightarrow (x,-y)[/tex]
[tex]W(2,0)\rightarrow W'(2,0)[/tex]
[tex]X(4,3)\rightarrow X'(4,-3)[/tex]
[tex]W(5,2)\rightarrow Y'(5,-2)[/tex]
The given transformation shows reflection on x-axis as the translation statement in axis too is given as :
[tex](x,y)\rightarrow (x,-y)[/tex]
Second transformation:
[tex](x,-y)\rightarrow (x-5,y-2)[/tex]
[tex]W'(2,0)\rightarrow W"(2-5,0-2)=(-3,-2) [/tex]
[tex]X'(4,-3)\rightarrow X"(4-5,-3-2)=(-1,-5)[/tex]
[tex]Y'(5,-2)\rightarrow ) Y"(5-5,-2-2)=(0,-4)([/tex]
The given transformation shows translation of 5 units to the left and 2 units down
Thus, the image points can be given as:
W"(-3,-2), X"(-1,-5), Y"(0,-4)