Answer:
1.175 V
Explanation:
We are given that
Work function of the material=[tex]w_0=3.8\times 10^{-19}[/tex] J
Wavelength of light=[tex]350 nm=350\times 10^{-9}[/tex]m
[tex]1nm=10^{-9} m[/tex]
Energy of photon=Work function+Kinetic energy of electron
[tex]\frac{hc}{\lambda}=w_0+e\delta V[/tex]
Where
[tex]\lambda[/tex]=Wavelength of light
[tex]c=3\times 10^8 m/s[/tex]=Speed of light
[tex]w_0=[/tex]Work function
[tex]\delta V[/tex]=Small voltage
[tex]h=6.63\times 10^{-34} J-s[/tex]=Plank's constant
[tex]e=1.6\times 10^{-19} C[/tex]
Substitute the values then we get
[tex]\frac{6.63\times 10^{-34}\times 3\times 10^8}{350\times 10^{-9}}=3.8\times 10^{-19}+1.6\times 10^{-19}\delta V[/tex]
[tex]5.68\times 10^{-19}-3.8\times 10^{-19}=1.6\times 10^{-19}\delta V[/tex]
[tex]1.88\times 10^{-19}=1.6\times 10^{-19}\delta V[/tex]
[tex]\delat V=\frac{1.88\times 10^{-19}}{1.6\times 10^{-19}}[/tex]
[tex]\delta V=1.175 V[/tex]
Hence, the lowest voltage needed between the cathode and the anode to stop any electrons ejected from the cathode from reaching the anode=1.175 V