Answer:
ΔH°f(C₈H₁₈(g)) = -210.9 kJ/mol
Explanation:
Let's consider the combustion of C₈H₁₈.
C₈H₁₈(g) + 25/2 O₂(g) ⟶ 8 CO₂(g) + 9 H₂O(g) ΔH°rxn = − 5113.3 kJ
We can calculate the standard enthalpy of formation of C₈H₁₈(g) using the following expression.
ΔH°rxn = 8 mol × ΔH°f(CO₂(g)) + 9 mol × ΔH°f(H₂O(g)) - 1 mol × ΔH°f(C₈H₁₈(g)) - 25/2 mol × ΔH°f(O₂(g))
1 mol × ΔH°f(C₈H₁₈(g)) = 8 mol × ΔH°f(CO₂(g)) + 9 mol × ΔH°f(H₂O(g)) - 25/2 mol × ΔH°f(O₂(g)) - ΔH°rxn
1 mol × ΔH°f(C₈H₁₈(g)) = 8 mol × (-393.5 kJ/mol) + 9 mol × (-241.8 kJ/mol) - 25/2 mol × 0 kJ/mol - (− 5113.3 kJ)
ΔH°f(C₈H₁₈(g)) = -210.9 kJ/mol