A particle moves through an xyz coordinate system while a force acts on it. When the particle has the position vector vector r = (2.00 m)i hat - (3.00 m)j + (2.00 m)k, the force is vector F = Fxi hat + (7.00 N)j - (5.10 N)k and the corresponding torque about the origin is τ = (1.30 N·m)i hat + (-0.80 N·m)j + (-2.50 N·m)k. Determine Fx.

Respuesta :

Answer:

[tex]F_x=5.5\ N[/tex]

Explanation:

Given that,

Torque, [tex]\tau=(1.3i-0.8j-2.5k)\ N-m[/tex]

Force, [tex]F=(F_xi+7j-5.1k)\ N[/tex]

Position vector, [tex]r=(2i-3j+2k)\ m[/tex]

Torque acting on the particle is given by :

[tex]\tau=F\times r[/tex]

[tex](1.3i-0.8j-2.5k)=(F_xi+7j-5.1k)\times (2i-3j+2k)[/tex]

The coefficient of i should be same. So,

[tex](1.3i-0.8j-2.5k)=-(F_xi+7j-5.1k)\times (2i-3j+2k)[/tex]

[tex](1.3i-0.8j-2.5k)=\begin{pmatrix}1.3&10.2+2x&3x+14\end{pmatrix}[/tex]  

On comparing both sides, we get :

[tex]F_x=5.5\ N[/tex]

So, the x component of force is 5.5 N. Hence, this is the required solution.

ACCESS MORE