Answer:
[tex]F_x=5.5\ N[/tex]
Explanation:
Given that,
Torque, [tex]\tau=(1.3i-0.8j-2.5k)\ N-m[/tex]
Force, [tex]F=(F_xi+7j-5.1k)\ N[/tex]
Position vector, [tex]r=(2i-3j+2k)\ m[/tex]
Torque acting on the particle is given by :
[tex]\tau=F\times r[/tex]
[tex](1.3i-0.8j-2.5k)=(F_xi+7j-5.1k)\times (2i-3j+2k)[/tex]
The coefficient of i should be same. So,
[tex](1.3i-0.8j-2.5k)=-(F_xi+7j-5.1k)\times (2i-3j+2k)[/tex]
[tex](1.3i-0.8j-2.5k)=\begin{pmatrix}1.3&10.2+2x&3x+14\end{pmatrix}[/tex]
On comparing both sides, we get :
[tex]F_x=5.5\ N[/tex]
So, the x component of force is 5.5 N. Hence, this is the required solution.