Respuesta :
Answer:
1581357.68216 Pa
163.21352 m
Explanation:
A = Area = [tex]\pi r^2[/tex]
v = Velocity
1 denotes inlet
2 denotes exit
[tex]\rho[/tex] = Density of water = 1000 kg/m³
Flow rate is given by
[tex]Q=A_1v_1\\\Rightarrow v_1=\dfrac{Q}{A_1}\\\Rightarrow v_1=\dfrac{40\times 10^{-3}}{\pi 0.045^2}\\\Rightarrow v_1=6.2876\ m/s[/tex]
[tex]Q=A_2v_2\\\Rightarrow v_2=\dfrac{Q}{A_2}\\\Rightarrow v_2=\dfrac{40\times 10^{-3}}{\pi 0.015^2}\\\Rightarrow v_1=56.58842\ m/s[/tex]
From the Bernoulli equation we get
[tex]P_1+\dfrac{1}{2}\rho v_1^2=P_2+\dfrac{1}{2}\rho v_2^2\\\Rightarrow P_2-P_1=\dfrac{1}{2}\rho (v_2^2-v_1^2)\\\Rightarrow \Delta P=\dfrac{1}{2}1000 (56.58842^2-6.2876^2)\\\Rightarrow \Delta P=1581357.68216\ Pa[/tex]
The pressure drop is 1581357.68216 Pa
From the Bernoulli equation
[tex]P_a+\dfrac{1}{2}\rho v_1^2=P_a+\dfrac{1}{2}\rho v_2+\rho gh\\\Rightarrow h=\dfrac{\dfrac{1}{2}v_1^2}{g}\\\Rightarrow h=\dfrac{\dfrac{1}{2}56.58842^2}{9.81}\\\Rightarrow h=163.21352\ m[/tex]
The height is 163.21352 m
Answer:
(a) 1581935 Pa
(b) 161.4 m
Explanation:
diameter, d = 3 cm
r = 1.5 cm
diameter, d = 9 cm
R = 4.5 cm
Volume per second, V = 40 L/s = 0.04 m^3/s
V = a x v1
0.04 = 3.14 x 0.015 x 0.015 x v1
v1 = 56.6 m/s
Now, 0.04 = 3.14 x 0.045 x 0.045 x v2
v2 = 6.3 m/s
(a) By use of Bernoullie's theorem
[tex]P_{1}+\frac{1}{2}dv_{1}^{2}=P_{2}+\frac{1}{2}dv_{2}^{2}[/tex]
where, d be the density of water
[tex]P_{1}+\frac{1}{2}\times 1000\times 56.6\times 56.6=P_{2}+\frac{1}{2}\times 1000\times 6.3\times 6.3[/tex]
P2 - P1 = 1581935 Pa
(b) Let h be the maximum height
P2 - P1 = x d x g
1581935 = h x 1000 x 9.8
h = 161.4 m