Answer:
[tex]w<23[/tex]
Step-by-step explanation:
Let l be the length and w be the width of the rectangle
Given:
The length of the rectangle is 4 meters more than the width.
The length of the rectangle is
[tex]l = 4 + width = 4+w[/tex]
The perimeter of the rectangle should be less than 100 meters.
The perimeter of the rectangle is [tex]2(l+w)[/tex] and it is less than 100 m.
So, the equation is.
[tex]2(l+w)<100[/tex]
Put length of the rectangle in above equation.
[tex]2((4+w)+w)<100[/tex]
[tex]2(4+2w)<100[/tex]
[tex]8+4w<100[/tex]
[tex]4w<100-8[/tex]
[tex]4w<92[/tex]
[tex]w<\frac{92}{4}[/tex]
[tex]w<23[/tex]
Therefore, the inequality expresses all of the possible widths is [tex]w<23[/tex]