Answer: [tex]I_2[/tex]= 0.0050 M
[tex]I[/tex] = 0.0155 M
Explanation:
Initial moles of [tex]I_2[/tex] = 0.072 mole
Volume of container = 3.9 L
Initial concentration of [tex]I_2=\frac{moles}{volume}=\frac{0.072moles}{3.9L}=0.018M[/tex]
The given balanced equilibrium reaction is,
[tex]I_2(g)\rightleftharpoons 2I(g)[/tex]
Initial conc. 0.018 M 0
At eqm. conc. (0.018-x) M (2x) M
The expression for equilibrium constant for this reaction will be,
[tex]K_c=\frac{[I]^2}{[I_2]}[/tex]
[tex]K_c=\frac{(2x)^2}{0.2-x}[/tex]
we are given : [tex]K_c=1.60\times 10^{-3}[/tex]
Now put all the given values in this expression, we get :
[tex]1.60\times 10^{-3}=\frac{(2x)^2}{(0.018-x)}[/tex]
[tex]x=0.0025[/tex]
So, the concentrations for the components at equilibrium are:
[tex][I]=2\times x=2\times 0.0025=0.0050[/tex]
[tex][I_2]=0.018-x=0.018-0.0025=0.0155[/tex]
Hence, concentrations of [tex]I_2[/tex] and [tex]I[/tex] are 0.0050 M ad 0.0155 M respectively.