Answer:
Explanation:
Given
radius of cone is [tex]R=7 in.[/tex]
height of cone [tex]H=9 in.[/tex]
rate of change of height is [tex]\frac{\mathrm{d} h}{\mathrm{d} t}=1.4 in./s[/tex]
From similar triangle Property at any instant where radius is r and height is h
[tex]\frac{r}{7}=\frac{h}{9}[/tex]
differentiating we get
[tex]9\times \frac{\mathrm{d} r}{\mathrm{d} t}=7\times \frac{\mathrm{d} h}{\mathrm{d} t}[/tex]
[tex]\frac{\mathrm{d} h}{\mathrm{d} t}=\frac{7}{9}\times 1.4=1.08 in./s[/tex]
Volume is given by
[tex]V=\frac{1}{3}\pi r^2h[/tex]
Differentiate
[tex]\frac{\mathrm{d} V}{\mathrm{d} t}=\frac{\pi }{3}\left [ 2r\frac{\mathrm{d} r}{\mathrm{d} t}\cdot h+\frac{\mathrm{d} h}{\mathrm{d} t}\cdot r^2\right ][/tex]
[tex]\frac{\mathrm{d} V}{\mathrm{d} t}=\frac{\pi }{3}\left [ 2\times 6.22\times 1.08+1.4\times 6.22^2\right ][/tex]
[tex]\frac{\mathrm{d} V}{\mathrm{d} t}=70.803 in.^3/s[/tex]