The coordinates of other endpoint S is (3, 2)
Given that midpoint of RS is M
Given endpoint R(23, 14) and midpoint M(13, 8)
To find: coordinates of the other endpoint S
The formula for midpoint is given as:
For a line containing containing two points [tex](x_1, y_1)[/tex] and [tex](x_2, y_2)[/tex] midpoint is given as:
[tex]m(x, y)=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)[/tex]
Here in this problem,
m(x, y) = (13, 8)
[tex](x_1, y_1) = (23, 14)\\\\(x_2, y_2) = ?[/tex]
Substituting the given values in above formula, we get
[tex](13,8)=\left(\frac{23+x_{2}}{2}, \frac{14+y_{2}}{2}\right)[/tex]
Comparing both the sides we get,
[tex]\begin{aligned}&13=\frac{23+x_{2}}{2} \text { and } 8=\frac{14+y_{2}}{2}\\\\&26=23+x_{2} \text { and } 16=14+y_{2}\\\\&x_{2}=3 \text { and } y_{2}=2\end{aligned}[/tex]
Thus the coordinates of other endpoint S is (3, 2)