Respuesta :
Answer with explanation:
The formula to find the confidence interval is given by :-
[tex]\overline{x}\pm z^*SE.[/tex]
, where [tex]\overline{x}[/tex] = Sample mean
z* = Critical value.
SE = Standard error , [tex]SE=\dfrac{\sigma}{\sqrt{n}}[/tex],[tex]\sigma[/tex] = Population standard deviation.
n= Sample size.
As per given , we have
[tex]\overline{x}=\$1510[/tex]
[tex]\sigma=\$236[/tex]
n= 360
[tex]SE=\dfrac{236}{\sqrt{360}}=\dfrac{236}{18.973665961}\\\\=12.43829213\approx12.49[/tex]
We know that the critical value for 0.90 confidence interval : z* = 1.645
Then, a 0.90 confidence interval for the mean claim payment.will be :
[tex]1510\pm (1.645)(12.49)\\\\ =1510\pm20.54605\\\\=(1510-20.54605,\ 1510+20.54605)\\\\=(1489.45395,\ 1530.54605)\approx(1489.45,\ 1530.55) [/tex]
∴ a 0.90 confidence interval for the mean claim payment. = ($1489.45,$1530.55)
We know that the critical value for 0.99 confidence interval : z* = 2.576
0.99 confidence interval for the mean claim payment will be :
[tex]1510\pm (2.576)(12.49)\\\\ =1510\pm32.17424\\\\=(1510-32.17424,\ 1510+32.17424)\\\\=(1477.82576,\ 1542.17424)\approx(1477.83,\ 1542.17) [/tex]
∴ a 0.99 confidence interval for the mean claim payment. = ($1477.83, $1542.17)