Respuesta :

Answer:

The explicit formula is  : [tex]a_n =  (1.5)(2)^{(n-1)}[/tex]

Step-by-step explanation:

Here, in the given GP sequence,

a(4)  = 12, r  = 2

Now, the general term in a  geometric sequence is given as:

[tex]a_n =  ar^{(n-1)}[/tex]

Now, here substituting the value of n = 4 , we get:

[tex]a_4 =  ar^{(\\4-1)}\\\implies a_4  = ar^3  = a(2)^3  = a \times  8 \\\implies a _4  = 8 a\\\implies 12 = 8 a\\\implies a = 12/8 = 1.5[/tex]

So, here the first term (a) in the sequence = 1.5

So, the explicit formula is given as :

[tex]a_n =  (1.5)(2)^{(n-1)}[/tex]

Hence, the explicit formula is  : [tex]a_n =  (1.5)(2)^{(n-1)}[/tex]

ACCESS MORE