Answer : The solubility of this gaseous solute will be, [tex]5.18\times 10^{-5}g/mL[/tex]
Explanation :
First we have to calculate the concentration of solute.
[tex]\text{Concentration of solute}=\frac{Mass}{Volume}=\frac{4.51\times 10^{-3}g}{250mL}=1.80\times 10^{-5}g/mL[/tex]
Now we have to calculate the Henry's law constant.
Using Henry's law :
[tex]C=k_H\times p[/tex]
where,
C = concentration of solute = [tex]1.80\times 10^{-5}g/mL[/tex]
p = partial pressure = 27.59 kPa
[tex]k_H[/tex] = Henry's law constant = ?
Now put all the given values in the above formula, we get:
[tex]1.80\times 10^{-5}g/mL=k_H\times (27.59kPa)[/tex]
[tex]K_H=6.52\times 10^{-7}g/mL.kPa[/tex]
Now we have to calculate the solubility of this gaseous solute when its pressure is 79.39 kPa.
[tex]C_{(79.39kPa)}=k_H\times p[/tex]
[tex]C_{(79.39kPa)}=(6.52\times 10^{-7}g/mL.kPa)\times (79.39kPa)[/tex]
[tex]C_{(79.39kPa)}=5.18\times 10^{-5}g/mL[/tex]
Therefore, the solubility of this gaseous solute will be, [tex]5.18\times 10^{-5}g/mL[/tex]