CNLSNC
contestada

The ratio of the area to the circumference of a circle is 5/4. What is the circumference of the circle?

Respuesta :

Answer:

The circumference of the circle is 16.

Step-by-step explanation:

Given:

The ratio of the area to the circumference of a circle is 5/4.

Now, to find the circumference of the circle.

So, we get radius(r) first to find circumference.

For, getting radius(r) we use the proportion:

[tex]\frac{Area}{circumference} =\frac{5}{4}[/tex]

Now, putting formula to solve it:

⇒[tex]\frac{\pi r^2}{2\pi r} =\frac{5}{4}[/tex]

On solving we get:

⇒[tex]\frac{r}{2}=\frac{5}{4}[/tex]

By multiplying with 2 on both sides we get:

⇒[tex]r=\frac{5}{4} \times 2[/tex]

⇒[tex]r=\frac{10}{4}[/tex]

⇒[tex]r=2.5.[/tex]

Radius = 2.5.

Now, putting the formula to get the circumference:

[tex]Circumference = 2\pi r[/tex]

Taking the value of π = 3.14.

[tex]Circumference = 2\times 3.14\times 2.5[/tex]

[tex]Circumference = 15.7[/tex]

Circumference = 16 (approximately).

Therefore, the circumference of the circle is 16.