I need help with this one
![I need help with this one class=](https://us-static.z-dn.net/files/d47/029444071f3b57ca7d6fb0f4e87fc96e.jpg)
Answer:
The coordinates of the midpoint of the two vertices are
(0,2) (Third option)
Step-by-step explanation:
Coordinates Of A Midpoint
Given a pair of points in the plane
[tex]\displaystyle P_1\ (x_1,y_1)\ ,\ P_2(x_2,y_2)[/tex]
the coordinates of the midpoint of both points are
[tex]\displaystyle x_m=\frac{x_1+x_2}{2}[/tex]
[tex]\displaystyle y_m=\frac{y_1+y_2}{2}[/tex]
The vertices given in the figure are
[tex]\displaystyle v_1(-4,1),\ v_2\ (4,3)[/tex]
So the x-coordinate of their midpoint is
[tex]\displaystyle x_m=\frac{-4+4}{2}=\frac{0}{2}=0[/tex]
And the y-coordinate of their midpoint is
[tex]\displaystyle y_m=\frac{1+3}{2}=\frac{4}{2}=2[/tex]
So the coordinates of the midpoint of the two vertices are
(0,2), the third option