Respuesta :

Answer:

[tex]length\ of \ minor\ axis = 6[/tex]

Step-by-step explanation:

Given:

The given equation is.

[tex]x^{2} +4y^{2} =36[/tex] -------------(1)

We write standard equation of an ellipse

[tex]\frac{x^{2}}{a^{2}}+\frac{y^{2} }{b^{2} } = 1[/tex]-------(2)

So equation 1 divided by 36 for standard form of an equation

[tex]\frac{x^{2}}{36}+\frac{4y^{2} }{36} = \frac{36}{36}[/tex]

[tex]\frac{x^{2}}{36}+\frac{y^{2} }{9} = 1[/tex]

So we compare equation 1 and equation 2.

we get [tex]a^{2} =36[/tex] and [tex]b^{2} =9[/tex]

so [tex]a =6[/tex] and [tex]b =3[/tex]

The length of the minor axis is [tex]2\times b[/tex]

Here [tex]b=3[/tex].

[tex]length\ of \ minor\ axis = 2\times 3[/tex]

[tex]length\ of \ minor\ axis = 6[/tex]

Therefore the length of the minor axis is 6

ACCESS MORE