Respuesta :

Answer:

[tex]x=\frac{15}{22}[/tex]

[tex]y=\frac{27}{11}[/tex]

Step-by-step explanation:

Given system of equations:

A) [tex]8x-y=3[/tex]

B) [tex]4x+5y=15[/tex]

To solve for [tex]x[/tex] and [tex]y[/tex]

Using substitution method to solve the system.

Rearranging equation A, to solve for [tex]y[/tex] in terms of [tex]x[/tex]

Subtracting both sides by [tex]3[/tex]

[tex]8x-y-3=3-3[/tex]

[tex]8x-y-3=0[/tex]

Adding [tex]y[/tex] both sides.

[tex]8x-y+y-3=0+y[/tex]

[tex]8x-3=y[/tex]

So, we have [tex]y=8x-3[/tex]

Substituting value of [tex]y[/tex] we got from A into equation B.

[tex]4x+5(8x-3)=15[/tex]

Using distribution.

[tex]4x+40x-15=15[/tex]

Simplifying.

[tex]44x-15=15[/tex]

Adding 15 both sides.

[tex]44x-15+15=15+15[/tex]

[tex]44x=30[/tex]

Dividing both sides by 44.

[tex]\frac{44x}{44}=\frac{30}{44}[/tex]

Simplifying fractions.

∴ [tex]x=\frac{15}{22}[/tex]  (Answer)

We can plugin [tex]x=\frac{15}{22}[/tex] in the rearranged equation A to get value of [tex]y[/tex]

[tex]y=8(\frac{15}{22})-3[/tex]

[tex]y=\frac{120}{22}-3[/tex]

Simplifying fractions.

[tex]y=\frac{60}{11}-3[/tex]

Making whole numbers to fractions.

[tex]y=\frac{60}{11}-\frac{3}{1}[/tex]

Taking LCD = 11 to subtract fractions

[tex]y=\frac{60}{11}-\frac{33}{11}[/tex]

[tex]y=\frac{60-33}{11}[/tex]

∴ [tex]y=\frac{27}{11}[/tex]  (Answer)

ACCESS MORE