Respuesta :

Answer:

[tex]m=-\frac{\sqrt3}{2}\ and\ m=\frac{\sqrt3}{2}[/tex]

Step-by-step explanation:

Given:

The equation given to solve is:

[tex]4m^2=3[/tex]

First, we divide both sides by 4. This gives,

[tex]\frac{4m^2}{4}=\frac{3}{4}\\\\m^2=\frac{3}{4}[/tex]

Now, we take square root on both sides. This gives,

[tex]\sqrt{m^2}=\pm\sqrt{\frac{3}{4}}[/tex]

We know that from the definition of square root function that:

[tex]\sqrt{x^2}=x[/tex]

[tex]\sqrt{\frac{x}{y}}=\frac{\sqrt{x}}{\sqrt{y}}[/tex]

Therefore,

[tex]\sqrt{m^2}=m[/tex]

[tex]\sqrt{\frac{3}{4}}=\frac{\sqrt{3}}{\sqrt{4}}=\frac{\sqrt3}{2}[/tex]

[tex]m=\pm\frac{\sqrt3}{2}[/tex]

Hence, two values of 'm' are possible. They are:

[tex]m=-\frac{\sqrt3}{2}\ and\ m=\frac{\sqrt3}{2}[/tex]

ACCESS MORE