Answer:
The solution is (1, -4)
Step-by-step explanation:
Given:
The pair of linear equations given are:
[tex]-20x = -88 - 17y---1\\7x = -61 - 17y---2[/tex]
Subtracting equation (1) from equation (2), we get:
[tex]7x-(-20x)=-61-17y-(-88-17y)\\7x+20x=-61-17y+88+17y\\27x=(-61+88)+(17y-17y)\\27x=27+0\\27x=27\\x=\frac{27}{27}=1[/tex]
Now, plug in the value of 'x' in equation (1) and solve for 'y'. This gives,
[tex]-20(1)=-88-17y\\-20=-88-17y\\17y=-88+20\\17y=-68\\y=\frac{-68}{17}=-4[/tex]
Therefore, the solution is (1, -4)