Answer: 125%
Step-by-step explanation:
The ratio of the width to the length of a rectangle is 2:3, respectively , this means that :
W = [tex]\frac{2}{3}[/tex]L
Area of a rectangle = Length X Width , this means that
A = L X [tex]\frac{2}{3}[/tex]L
A = [tex]\frac{2}{3}[/tex][tex]L^{2}[/tex]
The Length and the Width increased by 50% , this means that :
New Length = 1.5L
New Width = 1.5W
New area = 1.5L x 1.5 W
New area = 2.25WL
But W = [tex]\frac{2}{3}[/tex]L , therefore :
New Area = 2.25L( [tex]\frac{2}{3}[/tex]L )
New Area = 1.5[tex]L^{2}[/tex]
Therefore , % change in area = change in area / original area x 100
Change in area = 1.5[tex]L^{2}[/tex] - [tex]\frac{2}{3}[/tex][tex]L^{2}[/tex]
% change in area = 0.833/0.677 x 100
% change in area = 125%