Answer:
The change in entropy of gas is [tex]\Delta S= nC_{P}ln3[/tex]
Explanation:
n= Number of moles of gas
Change in entropy of gas = [tex]ds= \int \frac{dQ}{T}[/tex]
[tex]dQ= nC_{p}dT[/tex]
From the given,
[tex]V_{i}=V[/tex]
[tex]V_{f}=3V[/tex]
Let "T" be the initial temperature.
[tex]\frac {V_{i}}{T_{i}}=\frac {V_{f}}{T_{f}}[/tex]
[tex]\frac {V}{T}=\frac {3V}{T_{f}}[/tex]
[tex]{T_{f}} = 3T[/tex]
[tex]\int ds = \int ^{T_{f}}_{T_{i}} \frac{nC_{P}dT}{T}[/tex]
[tex]\Delta S = nC_{p}ln(\frac{T_{f}}{T_{i}})[/tex]
[tex]\Delta S = nC_{p}ln3[/tex]
Therefore, The change in entropy of gas is [tex]\Delta S= nC_{P}ln3[/tex]