A sample consisting of n mol of an ideal gas undergoes a reversible isobaric expansion from volume Vi to volume 3Vi. Find the change in entropy of the gas by calculating, ∫dQ / T, where dQ = nCPdT. (Use the following as necessary: Cp and n.)

Respuesta :

Answer:

The change in entropy of gas is [tex]\Delta S= nC_{P}ln3[/tex]

Explanation:

n= Number of moles of gas

Change in entropy of gas = [tex]ds= \int \frac{dQ}{T}[/tex]

[tex]dQ= nC_{p}dT[/tex]

From the given,

[tex]V_{i}=V[/tex]

[tex]V_{f}=3V[/tex]

Let "T" be the initial temperature.

[tex]\frac {V_{i}}{T_{i}}=\frac {V_{f}}{T_{f}}[/tex]

[tex]\frac {V}{T}=\frac {3V}{T_{f}}[/tex]

[tex]{T_{f}} = 3T[/tex]

[tex]\int ds = \int ^{T_{f}}_{T_{i}} \frac{nC_{P}dT}{T}[/tex]

[tex]\Delta S = nC_{p}ln(\frac{T_{f}}{T_{i}})[/tex]

[tex]\Delta S = nC_{p}ln3[/tex]

Therefore, The change in entropy of gas is [tex]\Delta S= nC_{P}ln3[/tex]

ACCESS MORE