Given: <SPT = <RQT, ST = RT Prove: PR = QS
![Given ltSPT ltRQT ST RT Prove PR QS class=](https://us-static.z-dn.net/files/d3f/148303058f82dfe7853ab39814a93500.jpg)
Answer:
See explanation
Step-by-step explanation:
Consider triangles PTS and QTR. In these triangles,
Thus, [tex]\triangle PTS\cong \triangle QTR[/tex] by AAS postulate.
Congruent triangles have congruent corresponding sides, so
[tex]PT=QT[/tex]
Consider segments PR and QS:
[tex]PR=PT+TR\ [\text{Segment addition postulate}]\\ \\QS=QT+TS\ [\text{Segment addition postulate}]\\ \\PT=QT\ [\text{Proven}]\\ \\ST=RT\ [\text{Given}][/tex]
So,
[tex]PR=SQ\ [\text{Substitution property}][/tex]