Answer:
1. the electric potential energy of the electron when it is at the midpoint is - 2.9 x [tex]10^{-17}[/tex] J
2. the electric potential energy of the electron when it is 10.0 cm from the 3.00 nC charge is - 5.04 x [tex]10^{-17}[/tex] J
Explanation:
given information:
[tex]q_{1}[/tex] = 3 nC = 3 x [tex]10^{-9}[/tex] C
[tex]q_{2}[/tex] = 2 nC = 2 x [tex]10^{-9}[/tex] C
r = 50 cm = 0.5 m
the electric potential energy of the electron when it is at the midpoint
potential energy of the charge, F
F = k [tex]\frac{q_{e}q}{r}[/tex]
where
k = constant (8.99 x [tex]10^{9} Nm^{2} /C^{2}[/tex])
electron charge, [tex]q_{e}[/tex] = - 1.6 x [tex]10^{-19}[/tex] C
since it is measured at the midpoint,
r = [tex]\frac{0.5}{2}[/tex]
= 0.25 m
thus,
F = [tex]F_{1}+ F_{2}[/tex]
= k[tex]\frac{q_{e} q_{1} }{r}[/tex] + k[tex]\frac{q_{e} q_{2} }{r}[/tex]
= [tex]\frac{kq_{e} }{r}[/tex] ([tex]q_{1} +q_{2}[/tex])
= (8.99 x [tex]10^{9} [/tex])( - 1.6 x [tex]10^{-19}[/tex] )(3 x [tex]10^{-9}[/tex] +2 x [tex]10^{-9}[/tex])/0.25
= - 2.9 x [tex]10^{-17}[/tex] J
the electric potential energy of the electron when it is 10.0 cm from the 3.00 nC charge
[tex]r_{1}[/tex] = 10 cm = 0.1 m
[tex]r_{2}[/tex] = 0.5 - 0.1 = 0.4 m
F = k[tex]\frac{q_{e} q_{1} }{r}[/tex] + k[tex]\frac{q_{e} q_{2} }{r}[/tex]
= [tex]kq_{e}[/tex]([tex]\frac{q_{1} }{r_{1} }[/tex]+[tex]\frac{q_{2} }{r_{2} }[/tex])
= (8.99 x [tex]10^{9} [/tex])( - 1.6 x [tex]10^{-19}[/tex] )(3 x [tex]10^{-9}[/tex] /0.1+2 x [tex]10^{-9}[/tex]/0.4)
= - 5.04 x [tex]10^{-17}[/tex] J