Answer:
[tex][H_{3}O^{+}]=x M = 2.5\times 10^{-5}M[/tex] and pH = 4.6
Explanation:
Construct an ICE table to calculate changes in concentration at equilibrium.
[tex]C_{6}H_{5}COOH+H_{2}O\rightleftharpoons C_{6}H_{5}COO^{-}+H_{3}O^{+}[/tex]
I(M): 0.17 0.42 0
C(M): -x +x +x
E(M): 0.17-x 0.42+x x
So, [tex]\frac{[C_{6}H_{5}COO^{-}][H_{3}O^{+}]}{[C_{6}H_{5}COOH]}=K_{a}(C_{6}H_{5}COOH)[/tex]
or, [tex]\frac{(0.42+x)x}{(0.17-x)}=6.3\times 10^{-5}[/tex]
or, [tex]x^{2}+0.4201x-(1.071\times 10^{-5})=0[/tex]
So, [tex]x=\frac{-0.4201+\sqrt{(0.4201)^{2}+(4\times 1\times 1.071\times 10^{-5})}}{(2\times 1)}M[/tex]
([tex]ax^{2}+bx+c=0\Rightarrow x=\frac{-b\pm \sqrt{b^{2}-4ac}}{2a};x< 0.17M[/tex])
So, [tex]x=2.5\times 10^{-5}[/tex]M
Hence [tex][H_{3}O^{+}]=x M = 2.5\times 10^{-5}M[/tex]
[tex]pH=-log[H_{3}O^{+}]=-logx=-log(2.5\times 10^{-5})=4.6[/tex]