Answer:
a = 9.94 m/s²
Explanation:
given,
density at center= 1.6 x 10⁴ kg/m³
density at the surface = 2100 Kg/m³
volume mass density as function of distance
[tex]\rho(r) = ar^2 - br^3[/tex]
r is the radius of the spherical shell
dr is the thickness
volume of shell
[tex]dV = 4 \pi r^2 dr[/tex]
mass of shell
[tex]dM = \rho(r)dV[/tex]
[tex]\rho = \rho_0 - br[/tex]
now,
[tex]dM = (\rho_0 - br)(4 \pi r^2)dr[/tex]
integrating both side
[tex]M = \int_0^{R} (\rho_0 - br)(4 \pi r^2)dr[/tex]
[tex]M = \dfrac{4\pi}{3}R^3\rho_0 - \pi R^4(\dfrac{\rho_0-\rho}{R})[/tex]
[tex]M = \pi R^3(\dfrac{\rho_0}{3}+\rho)[/tex]
we know,
[tex]a = \dfrac{GM}{R^2}[/tex]
[tex]a = \dfrac{G( \pi R^3(\dfrac{\rho_0}{3}+\rho))}{R^2}[/tex]
[tex]a =\pi RG(\dfrac{\rho_0}{3}+\rho)[/tex]
[tex]a =\pi (6.674\times 10^{-11}\times 6.38 \times 10^6)(\dfrac{1.60\times 10^4}{3}+2.1\times 10^3)[/tex]
a = 9.94 m/s²