Answer:
[tex]Ka=0.258[/tex]
Explanation:
To calculate the dissosiation factor of the HIn first we need to determine the concentration of ions in the solution. To do that we use the Lambert-Beer's law:
[tex]A=a*b*c[/tex]
Where:
A is the absorbance
a is the absorptivity
b is the length of the cuvette
c is the concentration
[tex]0.818=a*1cm*0.000127M[/tex]
[tex]a=6440.9 cm^{-1}*M^{-1}[/tex]
With this absorptivity we can calculate the concentration of HIn and In:
[tex]x_{HIn]+x_{In}=1[/tex]
[tex]x_{HIn]=1-x_{In}[/tex]
[tex]a=x_{In}*20060cm^{-1}*M^{-1}+ x_{HIn]*2929cm^{-1}*M^{-1}[/tex]
[tex]6440.9 cm^{-1}*M^{-1}=x_{In}*20060cm^{-1}*M^{-1}+ (1-x_{In})*2929cm^{-1}*M^{-1}[/tex]
[tex]6440.9 cm^{-1}*M^{-1}=x_{In}*20060cm^{-1}*M^{-1}+ 2929cm^{-1}*M^{-1} -x_{In}*2929cm^{-1}*M^{-1}[/tex]
[tex]x_{In}*17131cm^{-1}*M^{-1}=3511cm^{-1}*M^{-1}[/tex]
[tex]x_{In}=0.205[/tex]
[tex]x_{HIn]=1-0.205=0.795[/tex]
For the Ka:
[tex]Ka=\frac{[In]}{[HIn]}[/tex]
[tex]Ka=\frac{0.205}{0.795}=0.258[/tex]