To develop this problem it is necessary to apply the concepts related to kinetic energy and gravitational potential energy.
By conserving energy we know that
[tex]PE = KE[/tex]
[tex]\frac{1}{2}mv^2=\frac{GMm}{r}[/tex]
Where,
m = mass
v = Velocity
G = Gravitational universal constant
M = Mass of Spherical asteroid
m = mass of object
r = Radius
Mass of a Sphere can be expressed as,
[tex]M= \rho* (\frac{4}{3}\pi r^3 )[/tex]
Replacing we have that,
[tex]\frac{1}{2}*2.8^2 - 6.67*10^{-11}*\frac{4\pi*2000*r^3}{3r} = 0[/tex]
[tex]6.67*10^{-11}*(\frac{4\pi}3{}2000*r^2)=\frac{1}{2}*2.8^2[/tex]
[tex]r = \sqrt{\frac{1}{2}*\frac{2.8^2}{6.67*10^{-11}*2000*4/3*\pi}}[/tex]
[tex]r=2648 m[/tex]
Therefore the diameter is 5296 m.
b) Applying the concept of gravitational force and centripetal force we have to
[tex]F_g = F_c[/tex]
[tex]\frac{G M m}{r^2} = \frac{m v^2}{r}[/tex]
[tex]\frac{G M}{r} = v^2[/tex]
[tex]6.67*10^{-11}*\frac{(\frac{4\pi}{3}2000*r^3)}{r} = 2.8^2[/tex]
[tex]r=3746 m[/tex]
Therefore the diameter would be 7492 m