A proton is traveling to the right at 2.0 * 107 m/s. It has a head on perfectly elastic collision with a carbon atom. The mass of the carbon atom is 12 times the mass of the proton.
What are the speed and direction of each after the collision?

Respuesta :

Answer:

(a) [tex]v_{fC} = 3.1\times 10^{- 6}\ m/s[/tex], in the initial direction of the proton.

(b) [tex]v_{fp} - 3.7\times 10^{- 5}\ m/s[/tex], in the opposite direction.

Solution:

As per the question:

Velocity of the proton, [tex]v_{ip} = 2.0\times 10^{7}\ m/s[/tex]

If,

Mass of proton  be [tex]m_{p}[/tex]

Then

Mass of carbon atom, [tex]m_{C} = 12m_{p}[/tex]

Now, if the initial velocity of the proton be [tex]v_{ip}[/tex]

Let the carbon atom be initially at rest with initial velocity [tex]v_{iC} = 0\ m/s[/tex]

As the collision is perfectly elastic:

Using the principle of conservation of linear momentum:

[tex]m_{p}v_{ip} + m_{c}v_{iC} = m_{p}v_{fp} + m_{c}v_{fC}[/tex]

[tex] v_{fp} = 2.0\times 10^{7} - 12v_{fC}[/tex]             (1)

Using the conservation of energy:

[tex]\frac{1}{2}m_{p}v_{ip}^{2} + \frac{1}{2}m_{c}v_{iC}^{2} = \frac{1}{2}m_{p}v_{fp}^{2} + \frac{1}{2}m_{c}v_{fC}^{2}[/tex]

[tex]\frac{1}{2}m_{p}v_{ip}^{2} + 0 = \frac{1}{2}m_{p}v_{fp}^{2} + \frac{1}{2}12m_{p}v_{fC}^{2}[/tex]

Using eqn (1):

[tex](2.0\times 10^{7})^{2} = (2.0\times 10^{7} - 12v_{fC})^{2} + 12v_{fC}^{2}[/tex]

Solving the above quadratic eqn, we get:

[tex]v_{fC} = 3.1\times 10^{- 6}\ m/s[/tex]

Since, the velocity here is positive, i.e., the direction of the carbon atom is along the initial direction of proton.

Now, for the speed of the proton:

[tex]v_{fp} = 2.0\times 10^{7} - 12(3.1\times 10^{- 6}) = - 3.7\times 10^{- 5}\ m/s[/tex]

Negative sign here indicates that the movement of the proton is in the opposite direction.

The final speed of the proton is 1.69 x 10⁷ m/s to the left.

The final speed of the carbon atom is 3.1 x 10⁶ m/s to the right.

The given parameters;

  • initial speed of the proton, u₁ = 2 x 10⁷ m/s
  • mass of the proton, m₁ = m
  • initial speed of the  carbon atom, u₂ = 0
  • mass of the carbon atom, m₂ = 12 m

Apply the principle of conservation of linear momentum, to determine their speed after collision;

[tex]m_1 u_1 + m_2 u_2 = m_1 v_1 + m_2 v_2\\\\2\times 10^7 (m) + 12m(0) = mv_1 + 12mv_2\\\\2\times 10^7 (m) = m(v_1 + 12v_2)\\\\2\times 10^7 = v_1 + 12v_2 \ --(1)[/tex]

Apply one-dimensional velocity equation;

[tex]u_1 + v_1 = u_2 + v_2\\\\u_1 + v_1 = 0 + v_2\\\\2\times 10^7 + v_1 = v_2[/tex]

substitute the value of v₂ in the first equation;

[tex]2\times 10^7 = v_1 + 12(v_2)\\\\2\times 10^7 = v_1 + 12(2\times 10^7 \ + v_1)\\\\2\times 10^7 = v_1 + 24 \times 10^7 \ + \ 12v_1\\\\-22 \times 10^7 = 13v_1\\\\v _1 = \frac{-22\times 10^7}{13} \\\\v_1 = -1.69 \times 10^7 \ m/s[/tex]

Thus, the final speed of the proton is 1.69 x 10⁷ m/s to the left.

The final speed of the carbon atom is calculated as;

[tex]v_2 = v_1 + 2\times 10^7\\\\v_2 = -1.69 \times 10^6 \ +\ 2\times 10^7\\\\v_2 = 3.1 \times 10^6 \ m/s[/tex]

Learn more here:https://brainly.com/question/24424291

ACCESS MORE
EDU ACCESS
Universidad de Mexico