Respuesta :
Answer: The required solution is
[tex]y(t)=\dfrac{1}{12}e^{-t}-\dfrac{1}{12}e^{-7t}\cos 6t+\dfrac{1}{12}e^{-7t}\sin 6t.[/tex]
Step-by-step explanation: We are given to use the Laplace transform to solve the following initial-value problem :
[tex]y^\prime+y=e^{-7t}\cos 6t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)[/tex]
We have the following formulas of Laplace inverse transform:
[tex](i)~~L^{-1}\{\dfrac{s-a}{(s-a)^2+b^2}\}=e^{at}\cos bt,\\\\\\(ii)~~L^{-1}\{\dfrac{b}{(s-a)^2+b^2}\}=e^{at}\sin bt.[/tex]
Applying Laplace transform on both sides of equation (i), we have
[tex]L\{y^\prime+y\}=L\{e^{-7t}\cos 6t\}\\\\\Rightarrow sY(s)-y(0)+Y(s)=\dfrac{s-(-7)}{(s-(-7))^2+6^2}\\\\\\\Rightarrow (s+1)Y(s)-0 =\dfrac{s+7}{(s+7)^2+6^2}\\\\\\\Rightarrow Y(s)=\dfrac{s+7}{(s+1)(s^2+14s+85)}~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(ii)[/tex]
By the method of partial fractions, we have
[tex]\dfrac{s+7}{(s+1)(s^2+14s+85)}=\dfrac{A}{s+1}+\dfrac{Bs+C}{s^2+14s+85}\\\\\\\Rightarrow s+7=A(s^2+14s+85)+(Bs+C)(s+1)\\\\\Rightarrow s+7=(A+B)s^2+(14A+B+C)s+(85A+C)[/tex]
Equating the coefficients of s², s and the constant term from the above equation and solving, we get
[tex]A=\dfrac{1}{12},~~B=-\dfrac{1}{12},~~C=\dfrac{25}{12}.[/tex]
So, from equation (ii), we get
[tex]Y(s)=\dfrac{1}{12(s+1)}-\dfrac{s+1}{12(s^2+14s+85)}\\\\\\\Rightarrow Y(s)=\dfrac{1}{12(s+1)}-\dfrac{1}{12}\dfrac{s+7}{(s+7)^2+6^2}+\dfrac{6}{12}\dfrac{1}{(s+7)^2+6^2}[/tex]
Taking inverse Laplace transform on both sides of the above, we get
[tex]L^{-1}\{Y(s)\}=L^{-1}\{\dfrac{1}{12(s+1)}-\dfrac{1}{12}\dfrac{s+7}{(s+7)^2+6^2}+\dfrac{1}{2}\dfrac{1}{(s+7)^2+6^2}\}\\\\\\\Rightarrow y(t)=\dfrac{1}{12}e^{-t}-\dfrac{1}{12}e^{-7t}\cos 6t+\dfrac{1}{2\times6}e^{-7t}\sin 6t\\\\\\\Rightarrow y(t)=\dfrac{1}{12}e^{-t}-\dfrac{1}{12}e^{-7t}\cos 6t+\dfrac{1}{12}e^{-7t}\sin 6t.[/tex]
Thus, the required solution is
[tex]y(t)=\dfrac{1}{12}e^{-t}-\dfrac{1}{12}e^{-7t}\cos 6t+\dfrac{1}{12}e^{-7t}\sin 6t.[/tex]