Find the length of the following curve. If you have a grapher, you may want to graph the curve to see what it looks like. y = (2/3) (x^2 + 1) ^ (3/2) from x = 0 to x = 6 The length of the curve is ___. (Type an exact answer, using radicals as needed.)

Respuesta :

Answer:

Length of curve=150 units

Step-by-step explanation:

We are given that a curve

[tex]y=\frac{2}{3}(x^2+1)^{\frac{3}{2}}[/tex]

x=0 to x=6

We have to find the length of curve.

Differentiate w.r.t x then we get

[tex]\frac{dy}{dx}=\frac{2}{3}\times \frac{3}{2}\times (x^2+1)^{\frac{1}{2}}\times 2x=2x(x^2+1)^{\frac{1}{2}}[/tex]

Using formula:[tex]\frac{dx^n}{dx}=nx^{n-1}[/tex]

Length of curve=[tex]\int_{a}^{b}\sqrt{1+(\frac{dy}{dx})^2}dx[/tex]

Substitute the value

Then, we get

Length of curve=[tex]\int_{0}^{6}\sqrt{1+(2x(x^2+1)^{\frac{1}{2}})^2}dx[/tex]

Length of curve=[tex]\int_{0}^{6}\sqrt{1+4x^2(x^2+1)}dx[/tex]

Length of curve=[tex]\int_{0}^{6}\sqrt{1+4x^4+4x^2}dx=\int_{0}^{6}\sqrt{(2x^2+1)^2dx[/tex]

Length of curve=[tex]\int_{0}^{6}(2x^2+1)dx=[\frac{2x^3}{3}+x]^{6}_{0}[/tex]

Using formula:[tex]\int_{a}^{b}f(x)dx=f(b)-f(a)[/tex]

Length of curve=[tex]\frac{2}{3}(6)^3+6-0-0=150[/tex] units

ACCESS MORE
EDU ACCESS
Universidad de Mexico