Answer:
Length of curve=150 units
Step-by-step explanation:
We are given that a curve
[tex]y=\frac{2}{3}(x^2+1)^{\frac{3}{2}}[/tex]
x=0 to x=6
We have to find the length of curve.
Differentiate w.r.t x then we get
[tex]\frac{dy}{dx}=\frac{2}{3}\times \frac{3}{2}\times (x^2+1)^{\frac{1}{2}}\times 2x=2x(x^2+1)^{\frac{1}{2}}[/tex]
Using formula:[tex]\frac{dx^n}{dx}=nx^{n-1}[/tex]
Length of curve=[tex]\int_{a}^{b}\sqrt{1+(\frac{dy}{dx})^2}dx[/tex]
Substitute the value
Then, we get
Length of curve=[tex]\int_{0}^{6}\sqrt{1+(2x(x^2+1)^{\frac{1}{2}})^2}dx[/tex]
Length of curve=[tex]\int_{0}^{6}\sqrt{1+4x^2(x^2+1)}dx[/tex]
Length of curve=[tex]\int_{0}^{6}\sqrt{1+4x^4+4x^2}dx=\int_{0}^{6}\sqrt{(2x^2+1)^2dx[/tex]
Length of curve=[tex]\int_{0}^{6}(2x^2+1)dx=[\frac{2x^3}{3}+x]^{6}_{0}[/tex]
Using formula:[tex]\int_{a}^{b}f(x)dx=f(b)-f(a)[/tex]
Length of curve=[tex]\frac{2}{3}(6)^3+6-0-0=150[/tex] units