Answer:
The value of x is 5 , - 5
Step-by-step explanation:
Given as :
[tex]Log_{2}[/tex](x + 3) + [tex]Log_{2}[/tex](x - 3) = 4
Now, from log property
[tex]Log_{b}m + [tex]Log_{b}n = [tex]Log_{b}(m × n)
[tex]Log_{2}[/tex](x + 3) + [tex]Log_{2}[/tex](x - 3) = [tex]Log_{2}( (x + 3) × (x - 3) )
[tex]Log_{2}( (x + 3) × (x - 3) ) = 4
Again
[tex]Log_{a}b = x
So , b = [tex]a^{x}[/tex]
So, (x + 3) × (x - 3) = [tex]2^{4}[/tex]
Or, x² - 9 = 16
or, x² = 25
∴ x = [tex]\sqrt{25}[/tex]
I.e x = [tex]\pm[/tex] 5
Hence the value of x is 5 , - 5 Answer