To solve this problem it is necessary to apply the concepts of heat change and thermal efficiency.
The heat rate can be expressed under the function
[tex]Q = \dot{m} (h_1-h_2)[/tex]
Where,
m = Mass
[tex]h_i =[/tex] Enthalpy at each state
Our values are given as,
[tex]\dot{m} = 200kg/s[/tex]
[tex]T_H = 200\°C[/tex]
[tex]W = 6000kW[/tex]
[tex]T_{H,2} = 90\°C[/tex]
[tex]T_L = 25\°C[/tex]
From the tables of Enthalpy of Water at 200°C (Saturated liquid state)
[tex]h_1 = 852.4kJ/Kg[/tex]
At the same time for 80°C
[tex]h_2 = 334.9kJ/Kg[/tex]
Applying the equation of Heat,
[tex]Q = \dot{m}(h_1-h_2)[/tex]
Replacing,
[tex]Q = 200*(852.4-334.9)[/tex]
[tex]Q = 103500kW[/tex]
Therefore the efficiency would be
[tex]\eta = \frac{Q_L}{Q_H}[/tex]
[tex]\eta = \frac{6000}{103500}[/tex]
[tex]\eta = 0.0579[/tex]
Therefore the actual thermal efficiency of the turbine in percent is 0.0579.