Answer:
[tex]m_{CO2}=260.7 g CO2[/tex]
Explanation:
First of all we need to calculate the energy required:
[tex]KE= 0.5*m*v^2[/tex]
where:
[tex]m=2700kg[/tex]
[tex]v=67 mph=29.95 m/s[/tex]
[tex]KE= 0.5*2700kg*(29.95)^2[/tex]
[tex]KE= 1210953 J=1210.953 kJ[/tex]
Octane's combustion enthalpy: [tex]\Delta H_{comb}=- 5450 kJ/mol[/tex]
The reaction:
[tex]C_8H_{18} + 25/2 O_2 longrightarrow 8 CO_2 +9 H_O[/tex]
Mass of CO2:
[tex]m_{CO2}=\frac{1210.953 kJ}{5450mol}*\frac{1}{0.3}*\frac{8 mol CO2}{1 mol}*\frac{44 g CO2}{mol CO2}[/tex]
[tex]m_{CO2}=260.7 g CO2[/tex]