Respuesta :
Answer:
m < A = 34.44 degrees.
m < B = 40.60 degrees.
m < C = 104.96 degrees.
Step-by-step explanation:
Using the Cosine Rule we have;
c^2 = a^2 + b^2 - 2ab cos C
67.1^2 = 45.2^2 + 39.5^2 - 2*39.5*45.2 cos C
cos C = (67.1^2 - 45.2^2 - 39.5^2) / (-2*39.5*45.2)
cos C = -0.25841
C = 104.96 degrees
Using the Sine Rule:
c / sin C = b / sin B
67.1/ sin 104.96 = 45.2 / sin B
sin B = (45.2 * sin 104.96) / 67.1
= 0.65079
B = 40.60 degrees.
So A = 180 - 40.60 - 104.96 = 34.44 degrees.
Measure of angles A, B and C will be 34.73°, 40.69° and 104.58° respectively.
Given in ΔABC,
- BC = 39.5, AB = 67.1, AC = 45.2
By applying cosine rule to get the measure of angle A,
c² = a² + b² - 2a.b.cosC
By substituting the values in the expression,
(67.1)² = (39.5)² + (45.2)² - 2(39.5)(45.2)cosC
4502.41 = 1560.25 + 2043.04 - 3570.8(cosC)
899.12 = -3570.8(cosC)
cosC = -0.251798
C = 104.58°
By applying sine rule in triangle ABC,
[tex]\frac{\text{sinA}}{a}=\frac{\text{sinB}}{b}=\frac{\text{sinC}}{c}[/tex]
[tex]\frac{\text{sinB}}{45.2}=\frac{\text{sin(104.58)}}{67.1}[/tex]
sinB = 0.651929
B = 40.69°
By triangle sum theorem,
m∠A + m∠B + m∠C = 180°
m∠A + 40.69° + 104.58° = 180°
A = 34.73°
Measure of angles A, B and C will be 34.73°, 40.69° and 104.58° respectively.
Learn more,
https://brainly.com/question/14522721
