An electron that has an instantaneous velocity of ???? = 2.0 × 106 m ???? ???? + 3.0 × 106 m ???? ???? is moving through the uniform magnetic field ???? = 0.030T ???? − 0.15T ???? . (a) Find the force on the electron due to the magnetic field (b) Repeat your calculation for a proton having the same velocity.

Respuesta :

Explanation:

It is given that,

Velocity of the electron, [tex]v=(2\times 10^6i+3\times 10^6j)\ m/s[/tex]

Magnetic field, [tex]B=(0.030i-0.15j)\ T[/tex]

Charge of electron, [tex]q_e=-1.6\times 10^{-19}\ C[/tex]

(a) Let [tex]F_e[/tex] is the force on the electron due to the magnetic field. The magnetic force acting on it is given by :

[tex]F_e=q_e(v\times B)[/tex]

[tex]F_e=1.6\times 10^{-19}\times [(2\times 10^6i+3\times 10^6j)\times (0.030i-0.15j)][/tex]

[tex]F_e=-1.6\times 10^{-19}\times (-390000)(k)[/tex]

[tex]F_e=6.24\times 10^{-14}k\ N[/tex]

(b) The charge of electron, [tex]q_p=1.6\times 10^{-19}\ C[/tex]

The force acting on the proton is same as force on electron but in opposite direction i.e (-k). Hence, this is the required solution.

ACCESS MORE
EDU ACCESS